
We promised you there would be a Part 1 to FaxHell, and with today’s Patch
Tuesday and CVE-2020-1048, we can finally talk about some of the very exciting
technical details of the Windows Print Spooler, and interesting ways it can be
used to elevate privileges, bypass EDR rules, gain persistence, and more.
Ironically, the Print Spooler continues to be one of the oldest Windows
components that still hasn’t gotten much scrutiny, even though it’s largely
unchanged since Windows NT 4, and was even famously abused by Stuxnet (using
some similar APIs we’ll be looking at!). It’s extra ironic that an underground
‘zine first looked at the Print Spooler, which was never found by Microsoft, and
that’s what the team behind Stuxnet ended up using!

First, we’d like to shout out to Peleg Hadar and Tomer Bar from SafeBreach
Labs who earned the MSRC acknowledgment for one of the CVEs we’ll describe —
there are a few others that both the team and ourselves have found, which may be
patched in future releases, so there’s definitely still some dragons hiding. We
understand that Peleg and Tomer will be presenting their research at Blackhat
USA 2020, which should be an exciting addition to this post.

Secondly, Alex would like to apologize for the naming/branding of a CVE — we
did not originally anticipate a patch for this issue to have collided with other
research, and we thought that since the Spooler is a service, or a daemon in Unix
terms, and given the existence of FaxHell, the name PrintDemon would be
appropriate.

Winsider Seminars & Solutions Inc. — Windows Internals Training &
Consulting

PrintDemon: Print Spooler Privilege Escalation,
Persistence & Stealth (CVE-2020-1048 & more)

Yarden Shafir & Alex Ionescu May 12, 2020 Leave a comment Edit

Printers, Drivers, Ports, & Jobs

While we typically like to go into the deep, gory, guts of Windows components (it’s
an internals blog, after all!), we felt it would be worth keeping things simple, just
to emphasize the criticality of these issues in terms of how easy they are to
abuse/exploit — while also obviously providing valuable tips for defenders in
terms of protecting themselves.

So, to begin with, let’s look at a very simple description of how the printing
process works, extremely dumbed down. We won’t talk
about monitors or providors (sp) or processors, but rather just the basic printing
pipeline.

To begin with, a printer must be associated with a minimum of two elements:

• A printer port — you’d normally think of this as LPT1 back in the day, or a USB

port today, or even a TCP/IP port (and address)

◦ Some of you probably know that it can also “FILE:” which means the

printer can print to a file (PORTPROMPT: on Windows 8 and above)

• A printer driver — this used to be a kernel-mode component, but with the new

“V4” model, this is all done in user mode for more than a decade now

Because the Spooler service, implemented in Spoolsv.exe, runs with SYSTEM
privileges, and is network accessible, these two elements have drawn people to
perform all sorts of interesting attacks, such as trying to

• Printing to a file in a privilege location, hoping Spooler will do that

• Loading a “printer driver” that’s actually malicious

• Dropping files remotely using Spooler RPC APIs

• Injecting “printer drivers” from remote systems

• Abusing file parsing bugs in EMF/XPS spooler files to gain code execution

Most of which have resulted in actual bugs found, and some hardening done by
Microsoft. That being said, there remain a number of logical issues, that one
could call downright design flaws which lead to some interesting behavior.

Back to our topic: to make things work, we must first load a printer driver. You’d
naturally expect that this requires privileges, and some MSDN pages still suggest
the SeLoadDriverPrivilege is required. However, starting in Vista, to make things
easier for Standard User accounts, and due to the fact these now run in user-
mode, the reality is more complicated. As long as the driver is a pre-existing,
inbox driver, no privileges are needed — whatsoever — to install a print driver.

So let’s install the simplest driver there is: the Generic / Text-Only driver. Open
up a PowerShell window (as a standard user, if you’d like), and write:

> Add-PrinterDriver -Name "Generic / Text Only"

Now you can enumerate the installed drivers:

> Get-PrinterDriver

Name PrinterEnvironment MajorVersion Manufacturer
---- ------------------ ------------ ------------
Microsoft XPS Document Writer v4 Windows x64 4 Microsoft
Microsoft Print To PDF Windows x64 4 Microsoft
Microsoft Shared Fax Driver Windows x64 3 Microsoft
Generic / Text Only Windows x64 3 Generic

If you’d like to do this in plain old C, it couldn’t be easier:

hr = InstallPrinterDriverFromPackage(NULL, NULL, L"Generic / Text Only", NULL, 0);

Our next required step is to have a port that we can associate with our new
printer. Here’s an interesting, not well documented twist, however: a port can be a
file — and that’s not the same thing as “printing to a file”. It’s a file port, which is
an entirely different concept. And adding one is just as easy as yet another line of
PowerShell (we used a world writeable directory as our example):

> Add-PrinterPort -Name "C:\windows\tracing\myport.txt"

Let’s see the fruits of our labour:

> Get-PrinterPort | ft Name

Name

C:\windows\tracing\myport.txt
COM1:
COM2:
COM3:
COM4:
FILE:
LPT1:
LPT2:
LPT3:
PORTPROMPT:
SHRFAX:

To do this in C, you have two choices. First, you can prompt the user to input the
port name, by using the AddPortW API. You don’t actually need to have your own
GUI — you can pass NULL as the hWnd parameter — but you also have no control
and will block until the user creates the port. The UI will look like this:

Another choice is to manually replicate what the dialog does, which is to use the
XcvData API. Adding a port is as easy as:

PWCHAR g_PortName = L"c:\\windows\\tracing\\myport.txt";
dwNeeded = ((DWORD)wcslen(g_PortName) + 1) * sizeof(WCHAR);
XcvData(hMonitor,
 L"AddPort",
 (LPBYTE)g_PortName,
 dwNeeded,

NULL,
 0,
 &dwNeeded,
 &dwStatus);

The more complicated part is getting that hMonitor — which requires a bit of
arcane knowledge:

PRINTER_DEFAULTS printerDefaults;
printerDefaults.pDatatype = NULL;
printerDefaults.pDevMode = NULL;
printerDefaults.DesiredAccess = SERVER_ACCESS_ADMINISTER;
OpenPrinter(L",XcvMonitor Local Port", &hMonitor, &printerDefaults);

You might see ADMINISTER in there and go a-ha — that needs Adminstrator
privileges. But in fact, it does not: anyone can add a port. What you’ll note
though, is that passing in a path you don’t have access to will result in an “Access
Denied” error. More on this later.

Don’t forget to be a good citizen and call ClosePrinter(hMonitor) when you’re
done!

We have a port, we have a printer driver. That is all we need to create a printer
and bind it to these two elements. And again, this does not require a privileged
user, and is yet another single line of PowerShell:

> Add-Printer -Name "PrintDemon" -DriverName "Generic / Text Only" -PortName
"c:\windows\tracing\myport.txt"

Which you can now check with:

> Get-Printer | ft Name, DriverName, PortName

Name DriverName PortName
---- ---------- --------
PrintDemon Generic / Text Only C:\windows\tracing\myport.txt

The C code is equally simple:

PRINTER_INFO_2 printerInfo = { 0 };
printerInfo.pPortName = L"c:\\windows\\tracing\\myport.txt";
printerInfo.pDriverName = L"Generic / Text Only";
printerInfo.pPrinterName = L"PrintDemon";
printerInfo.pPrintProcessor = L"WinPrint";

printerInfo.pDatatype = L"RAW";
hPrinter = AddPrinter(NULL, 2, (LPBYTE)&printerInfo);

Now you have a printer handle, and we can see what this is good for.
Alternatively, you can use OpenPrinter once you know the printer exists, which
only needs the printer name.

What can we do next? Well the last step is to actually print something. PowerShell
delivers another simple command to do this:

> "Hello, Printer!" | Out-Printer -Name "PrintDemon"

If you take a look at the file contents, however, you’ll notice something “odd”:

0D 0A 0A 0A 0A 0A 0A 20 20 20 20 20 20 20 20 20
20 48 65 6C 6C 6F 2C 20 50 72 69 6E 74 65 72 21
0D 0A …

Opening this in Notepad might give you a better visual indication of what’s going
on — PowerShell thinks this is an actual printer. So it’s respecting the margins of
the Letter (or A4) format, adding a few new lines for the top margin, and then
spacing out your string for the left margin. Cute.

Bear in mind, this is behavior that in C, you can configure — but typically Win32
applications will print this way, since they think this is a real printer.

Speaking about C, how can you achieve the same effect? Well, here, we actually
have two choices — but we’ll cover the simpler and more commonly taken
approach, which is to use the GDI API, which will internally create a print job to
handle our payload.

DOC_INFO_1 docInfo;
docInfo.pDatatype = L"RAW";
docInfo.pOutputFile = NULL;
docInfo.pDocName = L"Document";
StartDocPrinter(hPrinter, 1, (LPBYTE)&docInfo);

PCHAR printerData = "Hello, printer!\n";
dwNeeded = (DWORD)strlen(printerData);
WritePrinter(hPrinter, printerData, dwNeeded, &dwNeeded);

EndDocPrinter(hPrinter);

And, voila, the file contents now simply store our string.

To conclude this overview, we’ve seen how with a simple set of unprivileged
PowerShell commands, or equivalent lines of C, we can essentially write data on
the file system by pretending it’s a printer. Let’s take a look at what happens
behind the scenes in Process Monitor.

Spooling as Evasion

Let’s take a look at all of the operations that occurred when we ran these
commands. We’ll skip the driver “installation” as that’s just a mess of PnP and
Windows Servicing Stack, and begin with adding the port:

Here we have our first EDR / DFIR evidence trail : it turns out that printer ports
are nothing more than registry values under HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Ports. Obviously, only privileged users can write to this
registry key, but the Spooler service does it for us over RPC, as you can see in the
stack trace below:

Next, let’s see how the printer creation looks like:

Again, we see that the operations are mostly registry based. Here’s how a printer
looks like — note the Port value, for example, which is showing our file path.

Now let’s look at what that PowerShell command did when printing out our
document. Here’s a full view of the relevant file system activity (the registry is no
longer really involved), with some interesting parts marked out:

Whoa — what’s going on here? First, let’s go a bit deeper in the world of printing.
As long as spooling is enabled, data printed doesn’t directly go to the printer.
Instead, the job is spooled, which essentially will result in the creation of a spool
file. By default, this will live in the c:\windows\system32\spool\PRINTERS directory,
but that is actually customizable on a per-system as well as per-printer basis
(that’s a thread worth digging into later).

Again, also by default, this file name will either be FPnnnnn.SPL for EMF print
operations, or simply nnnnn.SPL for RAW print operations. The SPL file is nothing
more than a copy, essentially, of all the data that is meant to go the printer. In
other words, it briefly contained the “Hello, printer!” string.

A more interesting file is the shadow job file. This file is needed because print jobs
aren’t necessarily instant. They can error out, be scheduled, be paused, either
manually or due to issues with the printer. During this time, information about
the job itself must remain in more than just Spoolsv.exe’s memory, especially
since it is often prone to crashing due to 3rd party printer driver bugs — and due
to the fact that print jobs survive reboots. Below, you can see the Spooler writing
out this file, whose data structure has changed over the years, but has now
reached the SHADOWFILE_4 data structure that is documented on our GitHub
repository.

We’ll talk about some interesting things you can do with the shadow job file later
in the persistence section.

Next, we have the actual creation of the file that is serving as our port.
Unfortunately, Process Monitor always shows the primary token, so if you double-
click on the event, you’ll see this operation is actually done under impersonation:

This is may actually seem like a key security feature of the Spooler service —
without it, you could create a printer port to any privileged location on the disk,
and have the Spooler “print” to it, essentially achieving an arbitrary file system
read/write primitive. However, as we’ll describe later, the situation is a bit more
complicated. It may also seem like from an EDR perspective, you still have some
idea as to who the user is. But, stay tuned.

Finally, once the write is done, both the spool file and the shadow job file are
deleted (by default), which is seen as those SetDisposition calls:

So far, what we’ve shown is that we can write anywhere on disk — presumably to
locations that we have access to — under the guise of the Spooler service.
Additionally, we’ve shown that the file creation is done under impersonation,
which should reveal the original user behind the operation. Investigating the job

itself will also show the user name and machine name. So far, forensically, it
seems like as long as this information can be gathered, it’s hard to hide…

We will break both of those assumptions soon, but first, let’s take a look at an
interesting way that this behavior can be used.

Spooling as IPC

The first interesting use of the Spooler, and most benign, is to leverage it for
communication between processes, across users, and even across reboots (and
potentially networks). You can essentially treat a printer as a securable object
(technically, a printer job is too, but that’s not officially exposed) and issue
both read and write operations in it, through two mechanisms:

• Using the GDI API, and issuing ReadPrinter and WritePrinter commands.

◦ First, you must have issued a StartDocPrinter and EndDocPrinter pair of

calls (in between the write) to create the printer job and spool data in it.

◦ The trick is to use SetJob to make the job enter a paused state from the

beginning (JOB_CONTROL_PAUSE), so the spool file remains

persistent

◦ The former API will return a print job ID, that the client side can then use

as part of a call to OpenPrinter with the special syntax of adding the suffix

,Job n to the printer name, which opens a print job instead of a printer.

◦ Clients can use the EnumJobs API to enumerate all the printer jobs

and find the one they want to read from based on some properties.

• Using the raw print job API, and using WriteFile after obtaining a handle to

the spool file.

◦ Once the writes are complete, call ScheduleJob to officially make it

visible.

◦ Client continues to use ReadPrinter like in the other option

You might wonder what advantages any of this has versus just using regular File
I/O. We’ve thought of a few:

• If going with the full GDI approach, you’re not importing any obvious I/O APIs

• The read and writes, when done by ReadPrinter and WritePrinter are not

done impersonated. This means that they appear as if coming from SYSTEM

running inside Spoolsv.exe

◦ This also potentially means you can read and write from a spooler file in

a location where you’d normally not have access to.

• It’s doubtful any security products, until just about now, have ever investigated

or looked at spooler files

◦ And, with the right API/registry changes, you can actually move the

spooler directory somewhere else for your printer

• By cancelling the job, you get immediate deletion of the data, again, from a

service context

• By resuming the job, you essentially achieve a file copy — albeit this one does

happen impersonated, as we’ve learnt so far

We’ve published on our GitHub repository a simple printclient and
printserver application, which implement client/server mechanism for
communicating between two processes by leveraging these ideas.

Let’s see what happens when we run the server:

As expected, we now have a spool file created, and we can see the print queue
below showing our job — which is highly visible and traceable, if you know to
look.

On the client side, let’s run the binary and look at the result:

The information you see at the top comes from the printer API — using EnumJob
and GetJob to retrieve the information that we want. Additionally, however, we
went a step deeper, as we wanted to look at the information stored in the shadow
job itself. We noted some interesting discrepancies:

• Even though MSDN claims otherwise, and the API will always return NULL,

print jobs to indeed have security descriptors

◦ Trying to zero them out in the shadow job made the Spooler unable to

ever resume/write the data!

• Some data is represented differently

◦ For example, the Status field in the shadow job has different semantics,

and contains internal statuses that are not exposed through the API

◦ Or, the StartTime and UntilTime, which are 0 in the API, are actually 60 in

the shadow job

We wanted to better understand how and when the shadow job data is read, and
when is internal state in the Spooler used instead — just like the Service Control
Manager both has its own in-memory database of services, but also backs it all up
in the registry, we thought the Spooler must work in a similar way.

Spooler Forensics

Eventually, thanks to the fact that the Spooler is written in C++ (which has rich
type information due to mangled function names) we understood that the Spooler
keeps track of jobs in INIJOB data structures.

We started looking at the various data structures involved in keeping track of
Spooler information, and came up with the following data structures, each of
which has a human-readable signature which makes reverse engineering easier:

For full disclosure, it seems GitHub continues to host NT4 source code for the
world to look at, and when searching for some of these types, the Spltypes.h
header file repeatedly came up. We used it as an initial starting point, and then
manually updated the structures based on reverse engineering.

To start with, you’ll want to find the pLocalIniSpooler pointer in Localspl.dll —
this contains a pointer to INISPOOLER, which is partially shown below:

Here it is in memory:

As you can see, this key data structure points to the first INIPRINTER, the
INIMONITOR, the INIENVIRONMENT, the INIPORT, the INIFORM, and the SPOOL. From
here, we could start by dumping the printer, which starts with the following data
structure:

In memory, for the printer the printserver PoC on GitHub creates, you’d see:

You could also choose to look at the INIPORT structures linked by the INISPOOLER
earlier — or directly grab the one associated with the INIPRINTER above. Each one
looks like this:

Once again, the port we created in the PoC looks like this in memory, at the time
that the job is being spooled:

Finally, both the INIPORT and the INIPRINTER were pointing to the INIJOB that we
created. The structure looks as such:

This should be very familiar, as it’s a different representation of much of the same
data from the shadow job file as well as what EnumJob and GetJob will return. For
our job, this is what it looked like in memory:

Locating and enumerating these structures gives you a good forensic overview of
what the Spooler has been up to — as long as Spoolsv.exe is still running and
nobody has tampered with it.

Unfortunately, as we’re about to show, that’s not something you can really depend
on.

Spooling as Persistence

Since we know that the Spooler is able to print jobs even across reboots (as well as
when the service exits for any reason), it stands to reason that there’s some logic
present to absorb the shadow job file data and create INIJOB structures out of it.

Looking in IDA, we found he following aptly named function and associated loop,
which is called during the initialization of the Local Spooler:

Essentially, this processes any shadow job file data associated with the Spooler
itself (server jobs, as they’re called), and then proceeds to enumerate every
INIPRINTER, get its spooler directory (typically, the default), and process its
respective shadow job file data.

This is performed by ProcessShadowJobs, which mainly executes the following
loop:

It’s not visible here, but the *.SHD wildcard is used as part of the FindFirstFile
API, so each file matching this extension is sent to ReadShadowJob. This breaks one
of our assumptions: there’s no requirement for these files to follow the naming
convention we described earlier. Combining with the fact that a printer can have
its own spooler directory, it means these files can be anywhere.

Looking at ReadShadowJob, it seemed that only basic validation was done of the
information present in the header, and many fields were, in fact, totally optional.
We constructed, by hand with a hex editor, a custom shadow job file that only had
the bare minimum to associate it to a printer, and restarted the Spooler, taking a
look at what we’d see in Process Monitor. We also created a matching .SPL file
with the same name, where we wrote a simple string.

First, we noted the Spooler scanning for FPnnnnn SPL files, which are normally
associated with EMF jobs (the FP stands for File Pool). Then, it searched for SHD
files, found ours, opened the matching SPL file, and continued looking for more
files. None were present, so NO MORE FILES was returned.

So, interestingly, you’ll notice how in the stack below, the DeleteOrphanFiles API
is called to cleanup FP files:

But the opposite effect happens for SHD files after — the following stack shows you
ProcessShadowJobs calling ReadShadowJob, as the IDA output above hypothesized.

What was the final effect of our custom placed SHD file, you ask? Well, take a look
at the print queue for the printer that we created…

It’s not looking great, is it? Double-clicking on the job gives us the following,
equally useless information.

Given that this job seems outright corrupt, and indicates 0 bytes of data, you’d
probably expect that resuming this job will abort the operation or crash in some
way. So did we! Here’s what actually happens:

The whole thing works just fine and goes off and writes the entire spool file into
our printer port, actual size in the SHADOWFILE_4 be damned. What’s even crazier is
that if you manually try calling ReadPrinter yourself, you won’t see any data come
in, because the RPC API actually checks for this value — even though the
PortThread does not!

What we’ve shown so far, is that with very subtle file system modifications, you
can achieve file copy/write behavior that is not attributable to any process,
especially after a reboot, unless some EDR/DFIR software somehow knew to
monitor the creation of the SHD file and understood its importance. With a
carefully crafted port name, you can imagine simply having the Spooler drop a PE
file anywhere on disk for you (assuming you have access to the location).

But things were about to take whole different turn in our research, when we asked
ourselves the question — “wait, after a reboot, how does the Spooler even
manage to impersonate the original user — especially if the data in the SHD file
can be NULL‘ed out?”.

Self Impersonation Privilege Escalation (SIPE)

Since Process Monitor can show impersonation tokens, we double-clicked on the
CreateFile event, just as we had done at the beginning of this blog. We saw that
indeed, the PortThreadwas impersonating… but… but…

The Spooler is impersonating… SYSTEM! It seems the code was never written to
handle a situation that would arise where a user might have logged out, or
rebooted, or simply the spooler crashing, and now we can write anywhere SYSTEM
can. Indeed, looking at the NT4 source code, the PrintDocumentThruPrintProcessor
function just zooms through and writes into the port.

However, we’re not ones to trust 30 year old code on GitHub, so we stuck with our
trusty IDA, and indeed saw the following code, which was added sometime
around the Stuxnet era:

And, indeed, CanUserAccessTargetFile immediately checks if hToken is NULL, and if
so, returns FALSE and sets the LastError to ERROR_ACCESS_DENIED.

Boom! Game Over! The code is safe, we checked it! Believe it or not, we’ve
previously gotten this type of response to security reports (not lately!).

Clearly, something is amiss, since we saw our write go through “impersonating”
SYSTEM.

This is where a very deep subtlety arises. Pay attention to this code in
CreateJobEntry, which is what ultimately initializes an INIJOB, and, if needed, sets
JOB_PRINT_TO_FILE.

A print job is considered to be headed to a file only if the user selected the “Print
to file” checkbox you see in the typical print dialog. A port, on the other hand,
that’s a literal file, completely skips this check.

Well, OK then — let’s stop with this C:\Windows\Tracing\ lameness, and create a
port in C:\Windows\System32\Ualapi.dll. Why this DLL? Well, you’ll see you saw
in Part Two!

Hmmm, that’s not so easy:

We are caught in the act, as you can see from the following Process Monitor
output:

The following stack shows how XcvData is called (an API you saw earlier) with the
PortIsValid command. While you can’t see it here (it’s on the “Event” tab), the
Spooler is impersonating the user at this point, and the user certainly doesn’t have
write access to c:\Windows\System32!

As such, it would seem that while it’s certainly interesting that we can get the
Spooler to write files to disk after a reboot / service start, without impersonation,

it’s unclear how this can be useful, since a port pointing to a privileged directory
must first be created. As an Administrator, it’s a great evasion and persistence
trick, but you might think this is where the game stops.

While messing around with ways to abuse this behavior (and we found a few!), we
also stumbled into something way, way, way, way… way simpler than the
advanced techniques we were coming up with. And, it would seem, so did the
folks at SafeBreach Labs, which beat us to the punch (gratz!) with CVE-2020-1048,
which we’ll cover below.

Client Side Port Check Vulnerability (CVE-2020-1048)

This bug is so simple that it’s almost embarrassing once you realize all it would’ve
taken is a PowerShell command.

If you scroll back up to where we showed the registry access in Spoolsv.exe as a
result of Add-PrinterPort, you see a familiar XcvData stack — but going straight to
XcvAddPort / DoAddPort — and not DoPortIsValid. Initially, we assumed that the
registry access was being done after the file access (which we had masked out in
Process Monitor), and that port validation had already occurred. But, when we
enabled file system events… we never saw the CreateFile.

Using the UI, on the other hand, first showed us this stack and file system
access, and then went ahead and added the port.

Yes, it was that simple. The UI dialog has a client-side check… the server, does
not. And PowerShell’s WMI Print Provider Module… does not.

This isn’t because PowerShell/WMI has some special access. The code in our PoC,
which uses XcvData with the AddPort command, directly gets the Spooler to add a
port with zero checking.

Normally, this isn’t a big deal, because all subsequent print job operations will
have the user’s token captured, and the file accesses will fail.

But not… if you reboot, or kill the spooler in some way. While that’s not
necessarily obvious for an unprivileged user, it’s not hard — especially given the
complexity and age of the Spooler (and its many 3rd party drivers).

So yes, walk to any unpatched system out there — you all have Windows 7 ESUs,
right? — and just write Add-PrinterPort -Name

c:\windows\system32\ualapi.dllin a PowerShell window. Congratulations! You’ve
just given yourself a persistent backdoor on the system. Now you just need to
“print” an MZ file to a printer that you’ll install using the systems above, and you’re
set.

If the system is patched, however, this won’t work. Microsoft fixed the
vulnerability by now moving the PortIsValid check inside of LcmXcvDataPort. That
being said, however, if a malicious port was already created, a user can
still “print” to it. This is because of the behavior we explained above — the
checks in CanUserAccessTargetFile do not apply to “ports pointing to files” — only
when “printing to a file”.

Conclusion — Call to Action!

This bug is probably one of our favorites in Windows history, or at least one of our
Top 5, due to its simplicity and age — completely broken in original versions of
Windows, hardened after Stuxnet… yet still broken. When we submitted some
additional related bugs (due to responsible disclosure, we don’t want to hint
where these might be), we thought the underlying impersonation behavior would
also be addressed, but it seems that this is meant to be by design.

Since the fix for PortIsValid does make the impersonation behavior moot for
newly patched systems, but leaves them vulnerable to pre-existing ports, we really
wanted to get this blog out there to warn the industry for this potentially latent
threat, now that a patch is out and attackers would’ve quickly figured out the issue
(load Localspl.dll in Diaphora — the two line call to PortIsValid jumps out at
you as the only change in the binary).

There are two steps you should immediately take:

1. Patch! This bug is ridiculously easy to exploit, both as an interactive user and

from limited remote-local contexts as well.

2. Scan for any file-based ports with either Get-PrinterPorts in PowerShell, or

just dump HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Ports. Any ports that have a file path in them — especially

ending in an extension such as .DLL or .EXE should be treated with extreme

prejudice.

Leave a comment

Winsider Seminars & Solutions Inc., Proudly powered by WordPress.

Comment

Post Comment

Privacy - Terms

